Symfony 3.0, the next major version of our preferred PHP framework, will be released in a few weeks. Basically, it shares the same code base as Symfony 2.8 but all deprecated features coming from older versions have been removed to simplify the framework and its maintenance:
Symfony 3 deprecation progress report. #symfony pic.twitter.com/Nz4pMZZwU4
— Symfony News (@symfony_en) October 6, 2015
Symfony 2.8 and 3.0 also come with a lot of new features including (but not limited to) the (awesome) Guard authentication system, LDAP support or a component to guess types of PHP properties. In this post we’ll discover another interesting feature proudly sponsored by Les-Tilleuls.coop I’ve added to the Dependency Injection Component: autowiring.
The #Symfony Dependency Injection Component now supports autowiring! https://t.co/6imXHSReGU #PHP
— Kévin Dunglas (@dunglas) October 3, 2015
Introduction
Autowiring allows to register services in the container with minimal configuration. It is practical in the field of rapid application development, when designing prototypes and in early stages of large projects. It makes it easy to bootstrap an app service graph and eases refactoring:
@dunglas right, that's an interesting aspect for cache invalidation as well: a change in the class itself should trigger a container build.
— Matthias Noback @matthiasnoback (@matthiasnoback) August 30, 2015
A demo containing all code snippets shown in this article is available in a dedicated GitHub repository.
Let’s see how it works. To do so we will build a fake API publishing statutes on a Twitter feed obfuscated with ROT13 (a special case of the Caesar cipher).
Start by creating a ROT13 transformer class:
<?php // src/AppBundle/Rot13Transformer.php namespace AppBundle; class Rot13Transformer { public function transform($value) { return str_rot13($value); } }
And now a Twitter client using this transformer:
<?php // src/AppBundle/TwitterClient.php namespace AppBundle; class TwitterClient { private $rot13Transformer; public function __construct(Rot13Transformer $rot13Transformer) { $this->rot13Transformer = $rot13Transformer; } public function tweetInRot13($user, $key, $status) { $transformedStatus = $this->rot13Transformer->transform($status); // Connect to Twitter and send the encoded status } }
The Dependency Injection Component is now able to automatically register the dependencies of this TwitterClient class. The twitter_client service definition just need to be marked as autowired:
# config/services.yml services: twitter_client: class: AppBundle\TwitterClient autowire: true
The autowiring subsystem will parse the constructor of the TwitterClient class and detects its dependencies that way. Here it will find and fill the need for an instance of a Rot13Transformer.
If an existing service definition (and only one – see below) is of the needed type, it will inject it. Here it’s not the case, but the subsystem is smart enough to automatically register a private service for the Rot13Transformer class and set it as first argument of the twitter_client service. Again, it can work only if there is one class of the given type. If there are several classes of the same type, you must fallback to the explicit service definition or register a default implementation (I’ll present this feature in a few line).
As you can see, the autowiring feature drastically reduces the amount of configuration required to define a service. No more arguments section! It also makes it easy to change the dependencies of the TwitterClient class: just add or remove typehinted arguments in the constructor and you’re done. There is no need anymore to search and edit related service definitions.
Here is a typical controller using the twitter_client services:
<?php // src/AppBundle/Controller/DefaultController.php namespace AppBundle\Controller; use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route; use Sensio\Bundle\FrameworkExtraBundle\Configuration\Method; use Symfony\Bundle\FrameworkBundle\Controller\Controller; use Symfony\Component\HttpFoundation\Request; use Symfony\Component\HttpFoundation\Response; use Symfony\Component\HttpKernel\Exception\BadRequestHttpException; class DefaultController extends Controller { /** * @Route("/tweet") * @Method("POST") */ public function tweetAction(Request $request) { $user = $request->request->get('user'); $key = $request->request->get('key'); $status = $request->request->get('status'); if (!$user || !$key || !$status) { throw new BadRequestHttpException(); } $this->get('twitter_client')->tweetInRot13($user, $key, $status); return new Response('OK'); } }
You can give a try to the API with curl:
curl -d “user=kevin&key=ABCD&status=Salut” http://localhost:8000/tweet
It should return OK.
Working with interfaces
This is nice but when the application grows, it’s recommended to code against abstractions instead of implementations: it allows to easily replace some dependencies without modifying the class depending of them.
To follow this best practice, constructor arguments must be typehinted with interfaces and not concrete classes. It allows to replace easily the current implementation if necessary.
Let’s introduce a Rot13TransformerInterface:
<?php // src/AppBundle/Rot13TransformerInterface.php namespace AppBundle; interface Rot13TransformerInterface { public function transform($value); }
Then edit Rot13Transformer to make it implementing the new interface:
// ... class Rot13Transformer implements Rot13TransformerInterface // ...
And update TwitterClient to depend of this new interface:
class TwitterClient { // ... public function __construct(Rot13TransformerInterface $rot13Transformer) { // ... } // ... }
Finally the service definition must be updated because, obviously, the autowiring subsystem isn’t able to find itself the interface implementation to register:
# app/config/services.yml services: rot13_transformer: class: AppBundle\Rot13Transformer twitter_client: class: AppBundle\TwitterClient autowire: true
The autowiring subsystem detects that the rot13_transformer service implements the Rot13TransformerInterface and injects it automatically. Even when using interfaces (and you should), building the service graph and refactoring the project is easier than with standard definitions.
Dealing with multiple implementations of the same type
Last but not least, the autowiring feature allows to specify the default implementation of a given type. Let’s introduce a new implementation of the Rot13TransformerInterface returning the result of the ROT13 transformation uppercased:
<?php // src/AppBundle/UppercaseRot13Transformer.php namespace AppBundle; class UppercaseRot13Transformer implements Rot13TransformerInterface { private $rot13transformer; public function __construct(Rot13TransformerInterface $rot13transformer) { $this->rot13transformer = $rot13transformer; } public function transform($value) { return strtoupper($this->rot13transformer->transform($value)); } }
This class is intended to decorate the standard ROT13 transformer (or any other implementation) and return it uppercased.
We can now refactor the controller to add another endpoint leveraging this new transformer:
<?php // src/AppBundle/Controller/DefaultController.php namespace AppBundle\Controller; use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route; use Sensio\Bundle\FrameworkExtraBundle\Configuration\Method; use Symfony\Bundle\FrameworkBundle\Controller\Controller; use Symfony\Component\HttpFoundation\Request; use Symfony\Component\HttpFoundation\Response; use Symfony\Component\HttpKernel\Exception\BadRequestHttpException; class DefaultController extends Controller { /** * @Route("/tweet") * @Method("POST") */ public function tweetAction(Request $request) { return $this->tweet($request, 'twitter_client'); } /** * @Route("/tweet-uppercase") * @Method("POST") */ public function tweetUppercaseAction(Request $request) { return $this->tweet($request, 'uppercase_twitter_client'); } private function tweet(Request $request, $service) { $user = $request->request->get('user'); $key = $request->request->get('key'); $status = $request->request->get('status'); if (!$user || !$key || !$status) { throw new BadRequestHttpException(); } $this->get($service)->tweetInRot13($user, $key, $status); return new Response('OK'); } }
The last step is to update service definitions to register this new implementation and a Twitter client using it:
# app/config/services.yml services: rot13_transformer: class: AppBundle\Rot13Transformer autowiring_types: AppBundle\Rot13TransformerInterface twitter_client: class: AppBundle\TwitterClient autowire: true uppercase_rot13_transformer: class: AppBundle\UppercaseRot13Transformer autowire: true uppercase_twitter_client: class: AppBundle\TwitterClient arguments: [ @uppercase_rot13_transformer ]
It deserves some explanations. We now have 2 services implementing the Rot13TransformerInterface. The autowiring subsystem cannot guess the which one to use, this leads to errors like:
[Symfony\Component\DependencyInjection\Exception\RuntimeException] Unable to autowire argument of type "AppBundle\Rot13TransformerInterface" for the service "twitter_client".
Fortunately, the autowiring_types key is here to specify which implementation to use by default. This key can take a list of types if necessary (using a YAML array).
Thanks to this setting, the rot13_transformer service is automatically injected as argument of the uppercase_rot13_transformer and twitter_client services. For the uppercase_twitter_client, we use a standard service definition to inject the specific uppercase_rot13_transformer service.
You now know everything you need to use the new autowiring feature! As this feature is directly available in the Dependency Injection Component, you can leverage it in any project using it, including Drupal 8, API Platform or BackBee once the component have been upgraded to 2.8+.
As for other RAD features such as the FrameworkBundle controller or annotations, keep in mind to not use autowiring in public bundles nor in large projects with complex maintenance needs.
Very interesting part, thanks for the work!
What about having autowire option default to true on our Symfony app? Is that possible?
It’s not possible (yet). We chosen to do it that way to ensure backward compatibility and to avoid edge cases.
What about an option on FrameworkBundle to enable auto-wiring project wide? (set to false by default for BC)
The problem with such global states is that a service definition (or a bundle using autowiring, even if it’s a bad practice) can work on a project but not on another depending of the config.
We try to avoid such behaviors.
I think you can write simple DependencyInjection Extension for that. Take all service definitions (or filter them as you like) and set them $autowire => true.
Also check if service definition already has argument. If yes, don’t set autowiring.
Take a look at https://github.com/dunglas/DunglasActionBundle
You put an example of `autowiring_types` with a custom service class, but how to deal with vendor classes.
Concret case, with a service that need TranslatorInterface, I get:
“`
Unable to autowire argument of type “Symfony\Component\Translation\TranslatorInterface” for the service “twig.ssl_certificate_extension”.
“`
Vendor classes must be fixed in the vendor or their definition must be overrided in your app.
We updated core classes of Symfony and “officials” bundles but it looks like we missed some components like Translator. Can you open a PR or open a bug in Symfony for this one?
If you are looking for Autowiring in Controllers, you will love this bundle: http://www.tomasvotruba.cz/blog/2016/03/10/autowired-controllers-as-services-for-lazy-people